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Introduction
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What is Verilog?

• A Hardware Description/Modeling Language (HDL)

• Originally developed in 1984 as a simulation language

• IEEE Standards: 1364-1995 & 1364-2001

• Further enhancements and maintenance are left to
IEEE-P1800 Standards Group (System-Verilog)

• Designs described/modeled by Verilog can be:

– simulated for validation,

– synthesized for implementation,

– formally checked for verification,

– and so on.
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Abstraction Levels in Verilog

Behavioral

RTL

Gate

Transistors/Switches

Our focus
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Our Strategy in Verilog Training

• Almost 90% of Verilog codes developed by
design and verification teams use less than
30% of language capabilities,

Thus our focus is mainly on those 30%.

• Not only the syntax and semantics, but also
coding styles are presented and emphasized,

• If there are N ways to do something,

Only 1-2 best, safest, and
most widely used methods are presented.
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Main Language Capabilities

• Digital is the only focus, analog/mixed-signal
is left to Verilog-AMS,

• Support of concurrency modeling,

• Support of hierarchical designs,

• Support of timing,

• Support of sequential coding for modeling of
digital designs,

• Use of C language keywords and syntax
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Verilog General Basics



M. R. Movahedin Verilog HDL8

User Identifiers

• Formed from {[A-Z], [a-z], [0-9], _, $},

but can’t begin with $ or [0-9]
– myidentifier 

– m_y_identifier 

– 3my_identifier 

– $my_identifier 

– _myidentifier$ 

• Case sensitivity: myid  Myid

• Escaped identifiers: \[any printable ASCII characters]+[ ]
– \{c@n}_[u]_(c)_#this^??+hurrah=!!
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Comments

• // The rest of the line is a comment

• /* Multiple line

comment */

• /* Nesting /* comments */ do NOT work */
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Verilog 4-Value Logic Set

• 0 represents low logic level or false condition

• 1 represents high logic level or true condition

• x/X represents unknown logic level

• z/Z represents high impedance logic level

but if read by a gate/module, will act as a x/X
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Logical Operations

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

| 0 1 X

0 0 1 X

1 1 1 1

X X 1 X

^ 0 1 X

0 0 1 X

1 1 0 X

X X X X

~ 0 1 X

1 0 X
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Numbers in Verilog (i)

<size>’<radix> <value>

– 8’h ax = 1010xxxx

– 12’o 3zx7 = 011zzzxxx111

No of 
bits

Binary  b or B
Octal  o or O
Decimal  d or D
Hexadecimal  h or H

Consecutive chars 
0-9, a-f, x, z
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Numbers in Verilog (ii)

• You can insert “_” for readability

– 12’b 000_111_010_100

– 12’b 000111010100

– 12’o 07_24

• Bit extension

– MS bit = 0, x or z  extend this
• 4’b x1 = 4’b xx_x1

– MS bit = 1  zero extension
• 4’b 1x = 4’b 00_1x

Represent the same number
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Numbers in Verilog (iii)

• If size is ommitted it

– is inferred from the value or

– takes the simulation specific number of bits or

– takes the machine specific number of bits

• If radix is ommitted too, decimal is assumed

– 15 = <size>’d 15
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wire is a wire

• wire keyword is used to declare an identifier
as a real hardware wire, single-line (scalar) or
bus,

• When unconnected, it is in high impedance,
i.e. has Z value,

• Can have one or multiple drivers (see next
table),

• Other net types, i.e. wor (trior), wand
(triand) and trireg, are rarely used,

• tri keyword is equal to wire.
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Multiple Driver Resolution

wire 0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z
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Implicit wires

• An undeclared identifier is treated implicitly
as a single bit wire,

• Never use this feature, and if possible turn it
off in your compiler,

• WARNING: misspelled identifiers can confuse
you and easily cause headaches.
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Vectors
• Represent busses

wire [3:0] busA;

wire [1:4] busB;

wire [1:0] busC;

• Left number is most significant (MS) bit
• Slice management

busC = busA[2:1];  busC[1] = busA[2];

busC[0] = busA[1];

• Vector assignment (by position!!)
busB = busA;  busB[1] = busA[3];

busB[2] = busA[2];

busB[3] = busA[1];

busB[4] = busA[0];

• You should have enough reasons not to use
[N:0] format for a bus definition.
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Variables

• Several types of variables:
– reg

– integer

– real

– time, realtime

• Only reg has two formats of scalar (1-bit) or

vectored, but not the rest,

• Should be assigned ONLY inside a sequential portion
of a code (always, initial, task, function),

• Can be read anywhere in the design, i.e. can act as a
driver for a wire.
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Variables, reg

• reg keyword is used to declare an identifier as a single-bit or vectored
4-value logic variable, and initialized to all X,

• reg has nothing to do with registers, it is just a variable,

• Wished they have used var keywords instead of reg,

• A variable acts as a container that holds the value assigned to it,

• In contrary to a wire that needs to have a driver, a reg/var holds its
value as long as no new value is assigned to it,

• Since it is only assigned in sequential portion of code, only a single
value is assigned to it at any time,

thus no multiple driver concept exists for reg,

• Based on the context, it can be a clocked register, a latch, output of a
combinational logic, a hardware wire, or just a temporary variable with
no hardware correspondent,

• Declaration may contain an initial value assignment,

• Again: reg is not always a reg!
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Variables: integer & real

• integer declares a 32-bit signed number,

• real declares a 64-bit double precision floating point
number per IEEE-754 standard,

• Never use inside a design, only for test bench
development,

• Declaration
integer i, k;

real r;

• Integers are initialized to X

• Reals are initialized to 0.0

• Useful Tasks: $realtobits, $bitstoreal
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Variables, time

• Special data type for simulation time

measuring

• Declaration

time my_time;

• Use inside procedure

my_time = $time; // get current sim time
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Arrays

• Syntax
integer A[1:5]; // 5 integers

reg B[-15:16]; // 32 1-bit regs

reg [7:0] mem[0:1023]; // 1024 8-bit regs

• Accessing array elements:

– Entire element: mem[10]= 8’b 10101010;

– Element subfield (needs temp storage):
reg [7:0] temp;

..

temp = mem[10];

var[6] = temp[2];
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Arrays, cont.

• Note: Cannot access array subfield or entire array at

once, it is an array, not a bus !!

var[2:9] = ???; // WRONG!!

var = ???; // WRONG!!

• Multi-dimentional wire and reg arrays are added in

2001:

reg [7:0] var [1:10][1:100];

• Memory: one-dimensional array of (vectored) reg

• Useful tasks: $readmemb, $readmemh
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Signed Keyword

• Signed keyword is added in Verilog-2001,
• Signed constants can be defined with an extra s in the radix part of the

number, e.g. 4'sb1000 | 8'shAC;
• Can be added in the declaration of a vectored wire or reg, showing that

it is a 2’s complement signed number,
reg signed [15:0]

wire signed [7:0]

• If a vector declared as signed, when an extension is
required, sign extension is applied instead of regular zero
filling,

wire signed [3:0] a = 4'b 1000;

wire signed [7:0] b = 8'b00000000;

wire [7:0] c = 8'b00000000;

wire [7:0] x = b | (a << 2); // 8’b11100000

wire [7:0] y = a | c; // 8’b00001000

• Will have a different result in *, /, %
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Logical & Arithmetic Operators
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Logical Operators

• C-like behavior:
– &&  logical AND

– ||  logical OR

– !  logical NOT

• Operands evaluated to ONE bit value: 0, 1 or x
– 0 when all bits are 0

– 1 when at least one bit is 1

– x when all bits are 0, x or z

i.e. all bits OR-ed

• Result is ONE bit value: 0, 1 or x
A = 6; A && B  1 && 0  0

B = 0; A || !B  1 || 1  1

C = x; C || B  x || 0  x

but C&&B=0
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Bitwise Operators

• &  bitwise AND

• |  bitwise OR

• ~  bitwise NOT

• ^  bitwise XOR

• ~^ or ^~  bitwise XNOR

• Operation on bit by bit basis

• Warning: A=2’b10; if(!A) ≠ if(~A)
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Bitwise Operators, cont.

c = ~a; c = a & b;

• a = 4’b1010;

b = 4’b1100;

• a = 4’b1010;

b = 2’b11;

c = a ^ b;
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Reduction Operators

• &  AND

• |  OR

• ^  XOR

• ~&  NAND

• ~|  NOR

• ~^ or ^~  XNOR

• One multi-bit (vector) operand  One single-bit result

a = 4’b1001;
c = |a; // c = 1|0|0|1 = 1

• Not a good readable practice, avoid using it if possible,
– Example: A && B ≠ A & & B

– Example: wire A; wire[7:0] B; => A && B ≡ A &| B

– Bad Code: if( A &&& B )
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Shift Operators

• >>  shift right

• <<  shift left

• >>>  signed shift right (for signed vectors)

• <<<  signed shift left (for signed vectors)

• Result is same size as first operand, sign extended if
signed, zero filled otherwise,

a = 4’b1010;

...

d = a >> 2; // d = 0010

c = a << 1; // c = 0100
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Concatenation Operator

• {op1, op2, ..}  concatenates op1, op2, .. to a single

number

• Operands must be explicitly sized !!
reg a;

reg [2:0] b, c;

..

a = 1’b 1;

b = 3’b 010;

c = 3’b 101;

catx = {a, b, c}; // catx = 1_010_101

caty = {b, 2’b11, a}; // caty = 010_11_1

catz = {b, 1}; // WRONG !!

• Replication ..
catr = {{4{a}}, b, {2{c}}}; // catr = 1111_010_101101
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Relational Operators

• >  greater than

• <  less than

• >=  greater or equal than

• <=  less or equal than

• Result is one bit value: 0, 1 or x

1 > 0  1

'b1x1 >= 0  x

10 > z  x
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Equality Operators

• ==  logical equality

• !=  logical inequality

• ===  case equality

• !==  case inequality

– 4’b 1z0x == 4’b 1z0x  x

– 4’b 1z0x != 4’b 1z0x  x

– 4’b 1z0x === 4’b 1z0x  1

– 4’b 1z0x !== 4’b 1z0x  0

Return 0, 1 or x

Return 0 or 1
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• cond_expr ? true_expr : false_expr

• Like a 2-to-1 mux ..

• Not to nest too deep, it becomes hard to read.

a = ’bx ? 8’b10101010 : 8’b10100101; // 8’b1010xxxx

Conditional Operator

A

B
Y

sel

Y = sel ? A : B;
0

1
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Arithmetic Operators

• +, -, *, /, %, **

• If arguments are n and m bits, bit-width of the

result:

– +/-: max(n, m) + 1

– *: n + m (signed ?: n + m - 1,)

• If any operand is x, then the result becomes x
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Operator Precedence

Use parentheses to 
enforce your 

priority
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Module Design
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Module Structure
`timescale 1ns/1ns

module module_name

#(

parameters

)

(

ports declaration

)

;

wires and variables

declaration

continuous assignments

module instantiations

always @(*) blocks

always @(clk edge) blocks

initial blocks

[ONLY in test-bench]

endmodule
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Module Parameter

• Parameters are used to tune module properties, such
as:

– Port bus width,

– Memory depth and width,

• They can have a default value at module level, and
can be altered by top module via #() or defparam
keywords,
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Ports Declaration

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

• Valid port directions are:
– input,
– output,
– inout

• They are wire by default,

• Only output ports can be
declared as a reg, if they are
assigned inside an always
block,

• Can be scalar or vector,
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Ports Declaration, cont.

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a, b,

output [nb-1:0] s,

output c, z, n,

output reg v

);

Not recommended,
single port per line, PLEASE.
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Ports Declaration, Old Syntax

`timescale 1ns/1ns

module adder_subtractor(sub, a, b, s, c, z, n, v);

parameter nb = 32;

input sub;

input [nb-1:0] a;

input [nb-1:0] b;

output [nb-1:0] s;

output c;

output z;

output n;

output v;

reg v; // or: output reg v;
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Continuous Assignment
• It defines a permanent driver for a wire,

• The assign keyword is used for this purpose,

• Can be any arbitrary arithmetic or logical expression,

• They are executed in parallel, thus order does not matter,

• Wire declaration and assignment can be combined in a single
statement,

• Better to order them in a more readable way,

• Logical loops are allowed by syntax, but are meaningless in
hardware and can abnormally terminate simulation,

• Can define multiple drivers for a wire that are resolved in the
background.

• A better and more readable way of gate level designs,

• Can corporate a delay in timescale unit.
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Continuous Assignment, Example

wire [nb-1:0] bb = sub ? ~b : b;

// wire [nb-1:0] bb = b ^ {nb{sub}};

assign {c, s} = a + bb + sub;

assign z = s == 0;

assign n = s[nb-1];

// wire version, remove reg in declaration

assign v = sub ?

( a[nb-1] != b[nb-1] && a[nb-1] != s[nb-1] )

: ( a[nb-1] == b[nb-1] && a[nb-1] != s[nb-1] );
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Continuous Assignment, Example

// `timescale 1ns/1ns

`timescale 1ns/100ps

wire A, B, enA, enB, Y;

assign #5.7 Y = enA ? A : 1’bz;

assign #4.3 Y = enB ? B : 1’bz;

. . . . .

wire A, B, C, D, Y1, Y2, Y;

assign

Y1 = A & B,

Y2 = C & D,

Y = Y1 | Y2;
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Module Instantiation

module_name

#(

.parameter_name( value ),

. . . .

.parameter_name( value )

)

instance_name

(

.port_name( connection ),

. . . .

.port_name( connection )

);

adder_subtractor

#(

.nb( 24 )

)

uut

(

.sub( mode ),

.a( a_in ),

.b( b_in ),

.s( s_out ),

.c( c_out ),

.z( z_out ),

.n( ), // not connected

.v( Ovflow )

);
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Port Binding

module

reg or net net

module

reg or net net

module

net net

• Inputs

• Outputs

• Inouts
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Port Binding, by Name, by Position

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

adder_subtractor

#(

.nb( 24 )

)

uut

(

.sub( mode ),

.a( a_in ),

.b( b_in ),

.s( s_out ),

.c( c_out ),

.z( z_out ),

.n( ),

.v( Ovflow )

);

adder_subtractor

#(

24

)

uut

(

mode,

a_in,

b_in,

s_out,

c_out,

z_out,

,

Ovflow )

);

NOT Recommended
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Initial Blocks
• Execution of each block starts at simulation beginning (sim-time

= 0) and finishes when the last statement is executed,
• Execution inside each initial block is in a sequential order, like a

C code, and takes zero simulation time,
• A module can have several initial blocks (alongside other

elements) all of which are alive in parallel. However, execution
of them are in an unknown order.

• Exclusively used in test-benches for:
– Pattern generation,
– Input feeding,
– Output verification,
– File access,
– . . .

• Does not have any real hardware correspondent, thus should
not be used in a design,

• Can assign values to only variables, but not nets,
• Use = (blocking) for variable assignments inside it,
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`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i = 0; i < num_tests; i = i + 1) begin

x = $random;

y = $random;

s = $random;

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

#9;

end

adder_subtractor #(.nb( 8 )) uut (

.sub( s ), .a( x ), .b( y ), .s( z ), .c( ), .z( ), .n( ), .v( ));

endmodule
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`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i=0; i<num_tests; i=i+1) begin

x = $random; y = $random; s = $random;

#10;

end

initial

for(i=0; i<num_tests; i=i+1) begin

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

#9;

end

adder_subtractor #(.nb( 8 )) uut (

.sub( s ), .a( x ), .b( y ), .s( z ), .c( ), .z( ), .n( ), .v( ));

endmodule
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`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i=0; i<num_tests; i=i+1) begin

x = $random; y = $random; s = $random;

#10;

end

always @( z ) begin

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

end

adder_subtractor #(.nb( 8 )) uut (

.sub( s ), .a( x ), .b( y ), .s( z ), .c( ), .z( ), .n( ), .v( ));

endmodule
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Initial Blocks, Revisited

• A module can have several initial blocks (alongside other
elements) all of which are alive in parallel. However, execution
of them are in an unknown (simulator dependent) order.

module test;

reg a;

initial

$display(a);

initial

a = 0;

initial

a = 1; 

endmodule

module test;

reg a = 1’bz;

initial

$display(a);

initial

a = 0;

initial

a = 1; 

endmodule

module test;

reg a = 1’bz;

initial

$display(a);

endmodule
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Blocking (=) & Non-Blocking (<=) Assignment

• An assignment to a variable inside a sequential block
can be done in two forms:
– Blocking by “=“
– Non-blocking by “<=“

• Consider zero-intra-assignment delay case:
• “=“ changes current value of the variable

immediately.
• “<=“ changes the new value of the variable and does

not touch the current value. This is copied to the
current value at the end of current iteration step.

• Reminder: in both cases, when there are more than
one assignment to a single variable, the last one
takes place and the rest are ignored (overwritten)
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“=“ & “<=“ Assignment, Example
integer a, b;

initial begin

a = 2;

b = 3;

$display("%0d, %0d", a, b); // 2 3

a <= b;

b <= a;

$display("%0d, %0d", a, b); // 2 3

#1;

$display("%0d, %0d", a, b); // 3 2

b <= a;

b <= a * a; // 2nd one overwrites the 1st one

a = b; // = assignment is done immediately

$display("%0d, %0d", a, b); // 2 2

#1;

$display("%0d, %0d", a, b); // 2 9

end
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Always Blocks
• Start execution at 

simulation time zero 
and continue until 
simulation finishes.

• All always blocks are 
alive in parallel, 
alongside other 
concurrent elements, 
such as continuous 
assignments.

• Even though syntax 
allows to have zero 
delay blocks, such  
blocks can easily 
cause simulation 
crash. Thus, each 
block should contain 
delay, or be 
controlled by an 
event.
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Events
• @

always @( signal1 or signal2 or .. ) begin

..

end

always @( posedge / negedge clk ) begin

..

end

always @( * ) begin

..

end

execution triggers every time 
any of the signals listed in 

sensitivity list changes

execution triggers every time 
clk changes from 0/x/z to 1

or 1/x/z to 0

execution triggers when any 
of the read signals inside the 

block changes
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Clock Generation

reg clk = 1’b1;

always @( clk ) clk <= #5 ~clk;

• It is a clock with a period of 10 time-scale
(e.g. ns). All positive edges are aligned at
multiple of 10’s.

• It is used in a test-bench, in a real design,
you need a real clock generator, not this !!
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Always @( * )

• Always sequential body is executed when any
of the wires or variables that are read inside
block statements is changed.

• Read signals/variables may appear in:

– Right hand side (RHS) of an assignment,

– Condition of an if-statement,

– Argument of a case-statement,

– etc. etc.
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Always @( * ), Example

// assign v = sub ?

// ( a[nb-1] != b[nb-1] && a[nb-1] != s[nb-1] )

// : ( a[nb-1] == b[nb-1] && a[nb-1] != s[nb-1] );

always @ ( * ) begin

v = 0;

if( sub == 0 ) begin // this is an add

if( a[nb-1] == b[nb-1] )

if( s[nb-1] != a[nb-1] )

v = 1; // overflow occurred

end

else // this is a sub

if( a[nb-1] != b[nb-1] )

if( s[nb-1] != a[nb-1] )

v = 1; // overflow occurred

end
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Combinational Logic Modeling

• In order to model a combinational logic by
means of sequential codes, rules are:
– Use “always @( * )” syntax,

– Use “=” (blocking) assignment without any delay,

– Make sure output (LHS variable) is assigned in all
conditional branches (if- and case-statements)

– To ensure above, and better readability, assign a
default value at the always block beginning.

– Do not use the output in any assignments. That
results in an invalid logical loop.

• Reminder: reg is not always a reg!
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Procedural Flow Control: if

if (expr1)
true_stmt1;

. . .
else if (expr2)

true_stmt2;
. . .
else

false_stmt;

module mux4_1(

output reg out,

input [3:0] in,

input [1:0] sel

);

always @( * )

if (sel == 0)

out = in[0];

else if (sel == 1)

out = in[1];

else if (sel == 2)

out = in[2];

else

out = in[3];

endmodule

always @( * )

out = in[ sel ];
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Procedural Flow Control: case

case (expr)

item_1, .., item_n: stmt1;
item_n+1, .., item_m:  stmt2;
. . .
default: def_stmt;

endcase

module mux4_1(

output reg out,

input [3:0] in,

input [1:0] sel

);

always @( * )

case (sel)

0: out = in[0];

1: out = in[1];

2: out = in[2];

3: out = in[3];

endcase

endmodule
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Procedural Loops

for (init_assignment; condition; step_assignment) // ++ and -- do not exist

loop_statement;

while (condition)

loop_statement;

repeat (no_of_times)

loop_statement;

forever

loop_statement;

loop_statement: a single line statement, or several lines grouped w/ begin-end
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Unwanted Latch Inference

• When a variable is not assigned at least in
one of the branch conditions, it means that
the model is silent with regards to that
variable in that specific circumstance.

• Since variables hold their values as long as
they are not changed, above scenario means
that variable value should not be changed in
that specific situation.

• This models a latch, doesn’t it?
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Unwanted Latch Inference, Example

always @( * )

case( op )

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

endcase

When op is 2’b011, 2’b110 or
2’b111, X will hold its previous
value, which is a latch behavior,
not a combinational logic, even
though op equal to those values
do not happen at all.

always @( * )

case( op )

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

default: X = ’bx;

endcase

always @( * ) begin

X = ’bx;

case( op )

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

endcase

end
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Always @( clk edge )

• How does a D-type flip-flop work? It waits for
the rising edge of the clock, then the output
(q) gets the value of input (d) after a short
delay.

• Here is the scenario in Verilog:

always @(posedge clk)

q <= d;

• It can be a large 64-bit register, a counter,
shift register, etc. etc.
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Always @( clk edge ),
Fully Synchronous Example

`timescale 1ns/1ns

module multi_func_reg(

input clk,

input reset,

input up,

input down,

input x5,

input x7,

input load,

input [31:0] data,

output reg [31:0] q

);

always @(posedge clk)

if(reset)

q <= 32'h00000000;

else if(load)

q <= data;

else if(up && !down)

q <= q + 1'b1;

else if(down && !up)

q <= q - 1'b1;

else if(x5)

q <= (q << 2) + q;

else if(x7)

q <= (q << 3) - q;

endmodule
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Always @( clk edge ), Async. Set & Reset

• A clock edge triggered flip-flop or register can only
asynchronously be set and/or reset, but nothing else, i.e. don’t
expect any async. functionality from them.

• The scenario would be: wait for clock edge to copy d to q, or
set/reset to change output accordingly. Here is the code:

always @(posedge clk, posedge set, posedge reset)

if(reset) // highest priority

q <= 1’b0;

else if(set)

q <= 1’b1;

else

q <= d;
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Module Structure
`timescale 1ns/1ns

module module_name

#(

parameters

)

(

ports declaration

)

;

wires and variables

declaration

continuous assignments

module instantiations

always @(*) blocks

always @(clk edge) blocks

initial blocks

[ONLY in test-bench]

endmodule
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Concurrency Implementation

• Each simulation time is divided into several simulation
iteration/time steps or delta times,

• Each wire or variable has two associated values:
1- Current, and 2- New,

• New values are evaluated if there is any change in their
governing wires and/or variables, but current values are kept
unchanged,

• In case of wires, multiple drivers are also taken into account
and new values are defined based on the appropriate resolution
function,

• In case of variables, if there are more than one new value, only
the latest one is saved and all others are overwritten,

• New values are assigned as current values at the beginning of
next step (delta time). This happens for all wires and variables
altogether,

• Simulation moves to next time when all new values are equal to
current values, thus nothing to be done for that simulation time.
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Built-In Primitives

• Built-in gate primitives:
and, nand, nor, or, xor, xnor, buf, not, bufif0, bufif1,
notif0, notif1, ...

• Examples:
nand (out, in1, in2); 2-input NAND without delay
and #2 (out, in1, in2, in3); 3-input AND with 2 t.u. delay
not #1 N1(out, in); NOT with 1 t.u. delay and instance name
xor X1(out, in1, in2); 2-input XOR with instance name

• User defined primitives (UDP) can be defined and
used. This is very useful for technology library
definition.

• Continuous assignment is preferred for modeling of
simple gates, use primitives only when necessary.
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Hierarchical Names

• At top module, i.e. usually test bench, wires and
variables of sub-modules can be accessed via:

instance_name.[instance_name.]signal_name

• This can save time declaring extra wires for reading
or interconnecting sub-modules,

• An easy way to put monitors on too deep sub-
modules at the top level.

• If an initialization is required, e.g. for a free running
counter, then this should be done only on top module
using hierarchical names.
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System Tasks

• $display(“..”, arg2, arg3, ..);  much like printf(), displays formatted
string in std output when encountered

• $monitor(“..”, arg2, arg3, ..);  like $display(), but .. displays string
each time any of arg2, arg3, .. Changes

• $stop;  suspends simulation when encountered

• $finish;  finishes simulation when encountered

• $fopen(“filename”);  returns file descriptor (integer); then, you can
use $fdisplay(fd, “..”, arg2, arg3, ..); or $fmonitor(fd, “..”, arg2, arg3,
..); to write to file

• $fclose(fd);  closes file

• $random(seed);  returns random integer; give her an integer as a
seed

Always written inside sequential part of the test-bench
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$display & $monitor string format


