
A Fast Path to

Digital Design with Verilog HDL

Mohammad-Reza Movahedin

Email: mov.courses@gmail.com

Please report bugs, errors and your valued comments to this Email address.

Sept. 2010

M. R. Movahedin Verilog HDL2

Introduction

M. R. Movahedin Verilog HDL3

What is Verilog?

• A Hardware Description/Modeling Language (HDL)

• Originally developed in 1984 as a simulation language

• IEEE Standards: 1364-1995 & 1364-2001

• Further enhancements and maintenance are left to
IEEE-P1800 Standards Group (System-Verilog)

• Designs described/modeled by Verilog can be:

– simulated for validation,

– synthesized for implementation,

– formally checked for verification,

– and so on.

M. R. Movahedin Verilog HDL4

Abstraction Levels in Verilog

Behavioral

RTL

Gate

Transistors/Switches

Our focus

M. R. Movahedin Verilog HDL5

Our Strategy in Verilog Training

• Almost 90% of Verilog codes developed by
design and verification teams use less than
30% of language capabilities,

Thus our focus is mainly on those 30%.

• Not only the syntax and semantics, but also
coding styles are presented and emphasized,

• If there are N ways to do something,

Only 1-2 best, safest, and
most widely used methods are presented.

M. R. Movahedin Verilog HDL6

Main Language Capabilities

• Digital is the only focus, analog/mixed-signal
is left to Verilog-AMS,

• Support of concurrency modeling,

• Support of hierarchical designs,

• Support of timing,

• Support of sequential coding for modeling of
digital designs,

• Use of C language keywords and syntax

M. R. Movahedin Verilog HDL7

Verilog General Basics

M. R. Movahedin Verilog HDL8

User Identifiers

• Formed from {[A-Z], [a-z], [0-9], _, $},

but can’t begin with $ or [0-9]
– myidentifier 

– m_y_identifier 

– 3my_identifier 

– $my_identifier 

– _myidentifier$ 

• Case sensitivity: myid  Myid

• Escaped identifiers: \[any printable ASCII characters]+[]
– \{c@n}_[u]_(c)_#this^??+hurrah=!!

M. R. Movahedin Verilog HDL9

Comments

• // The rest of the line is a comment

• /* Multiple line

comment */

• /* Nesting /* comments */ do NOT work */

M. R. Movahedin Verilog HDL10

Verilog 4-Value Logic Set

• 0 represents low logic level or false condition

• 1 represents high logic level or true condition

• x/X represents unknown logic level

• z/Z represents high impedance logic level

but if read by a gate/module, will act as a x/X

M. R. Movahedin Verilog HDL11

Logical Operations

& 0 1 X

0 0 0 0

1 0 1 X

X 0 X X

| 0 1 X

0 0 1 X

1 1 1 1

X X 1 X

^ 0 1 X

0 0 1 X

1 1 0 X

X X X X

~ 0 1 X

1 0 X

M. R. Movahedin Verilog HDL12

Numbers in Verilog (i)

<size>’<radix> <value>

– 8’h ax = 1010xxxx

– 12’o 3zx7 = 011zzzxxx111

No of
bits

Binary  b or B
Octal  o or O
Decimal  d or D
Hexadecimal  h or H

Consecutive chars
0-9, a-f, x, z

M. R. Movahedin Verilog HDL13

Numbers in Verilog (ii)

• You can insert “_” for readability

– 12’b 000_111_010_100

– 12’b 000111010100

– 12’o 07_24

• Bit extension

– MS bit = 0, x or z  extend this
• 4’b x1 = 4’b xx_x1

– MS bit = 1  zero extension
• 4’b 1x = 4’b 00_1x

Represent the same number

M. R. Movahedin Verilog HDL14

Numbers in Verilog (iii)

• If size is ommitted it

– is inferred from the value or

– takes the simulation specific number of bits or

– takes the machine specific number of bits

• If radix is ommitted too, decimal is assumed

– 15 = <size>’d 15

M. R. Movahedin Verilog HDL15

wire is a wire

• wire keyword is used to declare an identifier
as a real hardware wire, single-line (scalar) or
bus,

• When unconnected, it is in high impedance,
i.e. has Z value,

• Can have one or multiple drivers (see next
table),

• Other net types, i.e. wor (trior), wand
(triand) and trireg, are rarely used,

• tri keyword is equal to wire.

M. R. Movahedin Verilog HDL16

Multiple Driver Resolution

wire 0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z

M. R. Movahedin Verilog HDL17

Implicit wires

• An undeclared identifier is treated implicitly
as a single bit wire,

• Never use this feature, and if possible turn it
off in your compiler,

• WARNING: misspelled identifiers can confuse
you and easily cause headaches.

M. R. Movahedin Verilog HDL18

Vectors
• Represent busses

wire [3:0] busA;

wire [1:4] busB;

wire [1:0] busC;

• Left number is most significant (MS) bit
• Slice management

busC = busA[2:1];  busC[1] = busA[2];

busC[0] = busA[1];

• Vector assignment (by position!!)
busB = busA;  busB[1] = busA[3];

busB[2] = busA[2];

busB[3] = busA[1];

busB[4] = busA[0];

• You should have enough reasons not to use
[N:0] format for a bus definition.

M. R. Movahedin Verilog HDL19

Variables

• Several types of variables:
– reg

– integer

– real

– time, realtime

• Only reg has two formats of scalar (1-bit) or

vectored, but not the rest,

• Should be assigned ONLY inside a sequential portion
of a code (always, initial, task, function),

• Can be read anywhere in the design, i.e. can act as a
driver for a wire.

M. R. Movahedin Verilog HDL20

Variables, reg

• reg keyword is used to declare an identifier as a single-bit or vectored
4-value logic variable, and initialized to all X,

• reg has nothing to do with registers, it is just a variable,

• Wished they have used var keywords instead of reg,

• A variable acts as a container that holds the value assigned to it,

• In contrary to a wire that needs to have a driver, a reg/var holds its
value as long as no new value is assigned to it,

• Since it is only assigned in sequential portion of code, only a single
value is assigned to it at any time,

thus no multiple driver concept exists for reg,

• Based on the context, it can be a clocked register, a latch, output of a
combinational logic, a hardware wire, or just a temporary variable with
no hardware correspondent,

• Declaration may contain an initial value assignment,

• Again: reg is not always a reg!

M. R. Movahedin Verilog HDL21

Variables: integer & real

• integer declares a 32-bit signed number,

• real declares a 64-bit double precision floating point
number per IEEE-754 standard,

• Never use inside a design, only for test bench
development,

• Declaration
integer i, k;

real r;

• Integers are initialized to X

• Reals are initialized to 0.0

• Useful Tasks: $realtobits, $bitstoreal

M. R. Movahedin Verilog HDL22

Variables, time

• Special data type for simulation time

measuring

• Declaration

time my_time;

• Use inside procedure

my_time = $time; // get current sim time

M. R. Movahedin Verilog HDL23

Arrays

• Syntax
integer A[1:5]; // 5 integers

reg B[-15:16]; // 32 1-bit regs

reg [7:0] mem[0:1023]; // 1024 8-bit regs

• Accessing array elements:

– Entire element: mem[10]= 8’b 10101010;

– Element subfield (needs temp storage):
reg [7:0] temp;

..

temp = mem[10];

var[6] = temp[2];

M. R. Movahedin Verilog HDL24

Arrays, cont.

• Note: Cannot access array subfield or entire array at

once, it is an array, not a bus !!

var[2:9] = ???; // WRONG!!

var = ???; // WRONG!!

• Multi-dimentional wire and reg arrays are added in

2001:

reg [7:0] var [1:10][1:100];

• Memory: one-dimensional array of (vectored) reg

• Useful tasks: $readmemb, $readmemh

M. R. Movahedin Verilog HDL25

Signed Keyword

• Signed keyword is added in Verilog-2001,
• Signed constants can be defined with an extra s in the radix part of the

number, e.g. 4'sb1000 | 8'shAC;
• Can be added in the declaration of a vectored wire or reg, showing that

it is a 2’s complement signed number,
reg signed [15:0]

wire signed [7:0]

• If a vector declared as signed, when an extension is
required, sign extension is applied instead of regular zero
filling,

wire signed [3:0] a = 4'b 1000;

wire signed [7:0] b = 8'b00000000;

wire [7:0] c = 8'b00000000;

wire [7:0] x = b | (a << 2); // 8’b11100000

wire [7:0] y = a | c; // 8’b00001000

• Will have a different result in *, /, %

M. R. Movahedin Verilog HDL26

Logical & Arithmetic Operators

M. R. Movahedin Verilog HDL27

Logical Operators

• C-like behavior:
– &&  logical AND

– ||  logical OR

– !  logical NOT

• Operands evaluated to ONE bit value: 0, 1 or x
– 0 when all bits are 0

– 1 when at least one bit is 1

– x when all bits are 0, x or z

i.e. all bits OR-ed

• Result is ONE bit value: 0, 1 or x
A = 6; A && B  1 && 0  0

B = 0; A || !B  1 || 1  1

C = x; C || B  x || 0  x

but C&&B=0

M. R. Movahedin Verilog HDL28

Bitwise Operators

• &  bitwise AND

• |  bitwise OR

• ~  bitwise NOT

• ^  bitwise XOR

• ~^ or ^~  bitwise XNOR

• Operation on bit by bit basis

• Warning: A=2’b10; if(!A) ≠ if(~A)

M. R. Movahedin Verilog HDL29

Bitwise Operators, cont.

c = ~a; c = a & b;

• a = 4’b1010;

b = 4’b1100;

• a = 4’b1010;

b = 2’b11;

c = a ^ b;

M. R. Movahedin Verilog HDL30

Reduction Operators

• &  AND

• |  OR

• ^  XOR

• ~&  NAND

• ~|  NOR

• ~^ or ^~  XNOR

• One multi-bit (vector) operand  One single-bit result

a = 4’b1001;
c = |a; // c = 1|0|0|1 = 1

• Not a good readable practice, avoid using it if possible,
– Example: A && B ≠ A & & B

– Example: wire A; wire[7:0] B; => A && B ≡ A &| B

– Bad Code: if(A &&& B)

M. R. Movahedin Verilog HDL31

Shift Operators

• >>  shift right

• <<  shift left

• >>>  signed shift right (for signed vectors)

• <<<  signed shift left (for signed vectors)

• Result is same size as first operand, sign extended if
signed, zero filled otherwise,

a = 4’b1010;

...

d = a >> 2; // d = 0010

c = a << 1; // c = 0100

M. R. Movahedin Verilog HDL32

Concatenation Operator

• {op1, op2, ..}  concatenates op1, op2, .. to a single

number

• Operands must be explicitly sized !!
reg a;

reg [2:0] b, c;

..

a = 1’b 1;

b = 3’b 010;

c = 3’b 101;

catx = {a, b, c}; // catx = 1_010_101

caty = {b, 2’b11, a}; // caty = 010_11_1

catz = {b, 1}; // WRONG !!

• Replication ..
catr = {{4{a}}, b, {2{c}}}; // catr = 1111_010_101101

M. R. Movahedin Verilog HDL33

Relational Operators

• >  greater than

• <  less than

• >=  greater or equal than

• <=  less or equal than

• Result is one bit value: 0, 1 or x

1 > 0  1

'b1x1 >= 0  x

10 > z  x

M. R. Movahedin Verilog HDL34

Equality Operators

• ==  logical equality

• !=  logical inequality

• ===  case equality

• !==  case inequality

– 4’b 1z0x == 4’b 1z0x  x

– 4’b 1z0x != 4’b 1z0x  x

– 4’b 1z0x === 4’b 1z0x  1

– 4’b 1z0x !== 4’b 1z0x  0

Return 0, 1 or x

Return 0 or 1

M. R. Movahedin Verilog HDL35

• cond_expr ? true_expr : false_expr

• Like a 2-to-1 mux ..

• Not to nest too deep, it becomes hard to read.

a = ’bx ? 8’b10101010 : 8’b10100101; // 8’b1010xxxx

Conditional Operator

A

B
Y

sel

Y = sel ? A : B;
0

1

M. R. Movahedin Verilog HDL36

Arithmetic Operators

• +, -, *, /, %, **

• If arguments are n and m bits, bit-width of the

result:

– +/-: max(n, m) + 1

– *: n + m (signed ?: n + m - 1,)

• If any operand is x, then the result becomes x

M. R. Movahedin Verilog HDL37

Operator Precedence

Use parentheses to
enforce your

priority

M. R. Movahedin Verilog HDL38

Module Design

M. R. Movahedin Verilog HDL39

Module Structure
`timescale 1ns/1ns

module module_name

#(

parameters

)

(

ports declaration

)

;

wires and variables

declaration

continuous assignments

module instantiations

always @(*) blocks

always @(clk edge) blocks

initial blocks

[ONLY in test-bench]

endmodule

M. R. Movahedin Verilog HDL40

Module Parameter

• Parameters are used to tune module properties, such
as:

– Port bus width,

– Memory depth and width,

• They can have a default value at module level, and
can be altered by top module via #() or defparam
keywords,

M. R. Movahedin Verilog HDL41

Ports Declaration

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

• Valid port directions are:
– input,
– output,
– inout

• They are wire by default,

• Only output ports can be
declared as a reg, if they are
assigned inside an always
block,

• Can be scalar or vector,

M. R. Movahedin Verilog HDL42

Ports Declaration, cont.

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

`timescale 1ns/1ns

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a, b,

output [nb-1:0] s,

output c, z, n,

output reg v

);

Not recommended,
single port per line, PLEASE.

M. R. Movahedin Verilog HDL43

Ports Declaration, Old Syntax

`timescale 1ns/1ns

module adder_subtractor(sub, a, b, s, c, z, n, v);

parameter nb = 32;

input sub;

input [nb-1:0] a;

input [nb-1:0] b;

output [nb-1:0] s;

output c;

output z;

output n;

output v;

reg v; // or: output reg v;

M. R. Movahedin Verilog HDL44

Continuous Assignment
• It defines a permanent driver for a wire,

• The assign keyword is used for this purpose,

• Can be any arbitrary arithmetic or logical expression,

• They are executed in parallel, thus order does not matter,

• Wire declaration and assignment can be combined in a single
statement,

• Better to order them in a more readable way,

• Logical loops are allowed by syntax, but are meaningless in
hardware and can abnormally terminate simulation,

• Can define multiple drivers for a wire that are resolved in the
background.

• A better and more readable way of gate level designs,

• Can corporate a delay in timescale unit.

M. R. Movahedin Verilog HDL45

Continuous Assignment, Example

wire [nb-1:0] bb = sub ? ~b : b;

// wire [nb-1:0] bb = b ^ {nb{sub}};

assign {c, s} = a + bb + sub;

assign z = s == 0;

assign n = s[nb-1];

// wire version, remove reg in declaration

assign v = sub ?

(a[nb-1] != b[nb-1] && a[nb-1] != s[nb-1])

: (a[nb-1] == b[nb-1] && a[nb-1] != s[nb-1]);

M. R. Movahedin Verilog HDL46

Continuous Assignment, Example

// `timescale 1ns/1ns

`timescale 1ns/100ps

wire A, B, enA, enB, Y;

assign #5.7 Y = enA ? A : 1’bz;

assign #4.3 Y = enB ? B : 1’bz;

.

wire A, B, C, D, Y1, Y2, Y;

assign

Y1 = A & B,

Y2 = C & D,

Y = Y1 | Y2;

M. R. Movahedin Verilog HDL47

Module Instantiation

module_name

#(

.parameter_name(value),

. . . .

.parameter_name(value)

)

instance_name

(

.port_name(connection),

. . . .

.port_name(connection)

);

adder_subtractor

#(

.nb(24)

)

uut

(

.sub(mode),

.a(a_in),

.b(b_in),

.s(s_out),

.c(c_out),

.z(z_out),

.n(), // not connected

.v(Ovflow)

);

M. R. Movahedin Verilog HDL48

Port Binding

module

reg or net net

module

reg or net net

module

net net

• Inputs

• Outputs

• Inouts

M. R. Movahedin Verilog HDL49

Port Binding, by Name, by Position

module adder_subtractor

#(

parameter nb = 32

)

(

input sub,

input [nb-1:0] a,

input [nb-1:0] b,

output [nb-1:0] s,

output c,

output z,

output n,

output reg v

);

adder_subtractor

#(

.nb(24)

)

uut

(

.sub(mode),

.a(a_in),

.b(b_in),

.s(s_out),

.c(c_out),

.z(z_out),

.n(),

.v(Ovflow)

);

adder_subtractor

#(

24

)

uut

(

mode,

a_in,

b_in,

s_out,

c_out,

z_out,

,

Ovflow)

);

NOT Recommended

M. R. Movahedin Verilog HDL50

Initial Blocks
• Execution of each block starts at simulation beginning (sim-time

= 0) and finishes when the last statement is executed,
• Execution inside each initial block is in a sequential order, like a

C code, and takes zero simulation time,
• A module can have several initial blocks (alongside other

elements) all of which are alive in parallel. However, execution
of them are in an unknown order.

• Exclusively used in test-benches for:
– Pattern generation,
– Input feeding,
– Output verification,
– File access,
– . . .

• Does not have any real hardware correspondent, thus should
not be used in a design,

• Can assign values to only variables, but not nets,
• Use = (blocking) for variable assignments inside it,

M. R. Movahedin Verilog HDL51

`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i = 0; i < num_tests; i = i + 1) begin

x = $random;

y = $random;

s = $random;

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

#9;

end

adder_subtractor #(.nb(8)) uut (

.sub(s), .a(x), .b(y), .s(z), .c(), .z(), .n(), .v());

endmodule

M. R. Movahedin Verilog HDL52

`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i=0; i<num_tests; i=i+1) begin

x = $random; y = $random; s = $random;

#10;

end

initial

for(i=0; i<num_tests; i=i+1) begin

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

#9;

end

adder_subtractor #(.nb(8)) uut (

.sub(s), .a(x), .b(y), .s(z), .c(), .z(), .n(), .v());

endmodule

M. R. Movahedin Verilog HDL53

`timescale 1ns/1ns

module add_sub__tb;

parameter num_tests = 20;

reg s;

integer i;

wire signed [7:0] z;

reg signed [7:0] x, y;

initial

for(i=0; i<num_tests; i=i+1) begin

x = $random; y = $random; s = $random;

#10;

end

always @(z) begin

#1;

if(s)

$display("0x%x (%d) - 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

else

$display("0x%x (%d) + 0x%x (%d) = 0x%x (%d), %0s",

x, x, y, y, z, z, !uut.v ? "OK" : "Overflown");

end

adder_subtractor #(.nb(8)) uut (

.sub(s), .a(x), .b(y), .s(z), .c(), .z(), .n(), .v());

endmodule

M. R. Movahedin Verilog HDL54

Initial Blocks, Revisited

• A module can have several initial blocks (alongside other
elements) all of which are alive in parallel. However, execution
of them are in an unknown (simulator dependent) order.

module test;

reg a;

initial

$display(a);

initial

a = 0;

initial

a = 1;

endmodule

module test;

reg a = 1’bz;

initial

$display(a);

initial

a = 0;

initial

a = 1;

endmodule

module test;

reg a = 1’bz;

initial

$display(a);

endmodule

M. R. Movahedin Verilog HDL55

Blocking (=) & Non-Blocking (<=) Assignment

• An assignment to a variable inside a sequential block
can be done in two forms:
– Blocking by “=“
– Non-blocking by “<=“

• Consider zero-intra-assignment delay case:
• “=“ changes current value of the variable

immediately.
• “<=“ changes the new value of the variable and does

not touch the current value. This is copied to the
current value at the end of current iteration step.

• Reminder: in both cases, when there are more than
one assignment to a single variable, the last one
takes place and the rest are ignored (overwritten)

M. R. Movahedin Verilog HDL56

“=“ & “<=“ Assignment, Example
integer a, b;

initial begin

a = 2;

b = 3;

$display("%0d, %0d", a, b); // 2 3

a <= b;

b <= a;

$display("%0d, %0d", a, b); // 2 3

#1;

$display("%0d, %0d", a, b); // 3 2

b <= a;

b <= a * a; // 2nd one overwrites the 1st one

a = b; // = assignment is done immediately

$display("%0d, %0d", a, b); // 2 2

#1;

$display("%0d, %0d", a, b); // 2 9

end

M. R. Movahedin Verilog HDL57

Always Blocks
• Start execution at

simulation time zero
and continue until
simulation finishes.

• All always blocks are
alive in parallel,
alongside other
concurrent elements,
such as continuous
assignments.

• Even though syntax
allows to have zero
delay blocks, such
blocks can easily
cause simulation
crash. Thus, each
block should contain
delay, or be
controlled by an
event.

M. R. Movahedin Verilog HDL58

Events
• @

always @(signal1 or signal2 or ..) begin

..

end

always @(posedge / negedge clk) begin

..

end

always @(*) begin

..

end

execution triggers every time
any of the signals listed in

sensitivity list changes

execution triggers every time
clk changes from 0/x/z to 1

or 1/x/z to 0

execution triggers when any
of the read signals inside the

block changes

M. R. Movahedin Verilog HDL59

Clock Generation

reg clk = 1’b1;

always @(clk) clk <= #5 ~clk;

• It is a clock with a period of 10 time-scale
(e.g. ns). All positive edges are aligned at
multiple of 10’s.

• It is used in a test-bench, in a real design,
you need a real clock generator, not this !!

M. R. Movahedin Verilog HDL60

Always @(*)

• Always sequential body is executed when any
of the wires or variables that are read inside
block statements is changed.

• Read signals/variables may appear in:

– Right hand side (RHS) of an assignment,

– Condition of an if-statement,

– Argument of a case-statement,

– etc. etc.

M. R. Movahedin Verilog HDL61

Always @(*), Example

// assign v = sub ?

// (a[nb-1] != b[nb-1] && a[nb-1] != s[nb-1])

// : (a[nb-1] == b[nb-1] && a[nb-1] != s[nb-1]);

always @ (*) begin

v = 0;

if(sub == 0) begin // this is an add

if(a[nb-1] == b[nb-1])

if(s[nb-1] != a[nb-1])

v = 1; // overflow occurred

end

else // this is a sub

if(a[nb-1] != b[nb-1])

if(s[nb-1] != a[nb-1])

v = 1; // overflow occurred

end

M. R. Movahedin Verilog HDL62

Combinational Logic Modeling

• In order to model a combinational logic by
means of sequential codes, rules are:
– Use “always @(*)” syntax,

– Use “=” (blocking) assignment without any delay,

– Make sure output (LHS variable) is assigned in all
conditional branches (if- and case-statements)

– To ensure above, and better readability, assign a
default value at the always block beginning.

– Do not use the output in any assignments. That
results in an invalid logical loop.

• Reminder: reg is not always a reg!

M. R. Movahedin Verilog HDL63

Procedural Flow Control: if

if (expr1)
true_stmt1;

. . .
else if (expr2)

true_stmt2;
. . .
else

false_stmt;

module mux4_1(

output reg out,

input [3:0] in,

input [1:0] sel

);

always @(*)

if (sel == 0)

out = in[0];

else if (sel == 1)

out = in[1];

else if (sel == 2)

out = in[2];

else

out = in[3];

endmodule

always @(*)

out = in[sel];

M. R. Movahedin Verilog HDL64

Procedural Flow Control: case

case (expr)

item_1, .., item_n: stmt1;
item_n+1, .., item_m: stmt2;
. . .
default: def_stmt;

endcase

module mux4_1(

output reg out,

input [3:0] in,

input [1:0] sel

);

always @(*)

case (sel)

0: out = in[0];

1: out = in[1];

2: out = in[2];

3: out = in[3];

endcase

endmodule

M. R. Movahedin Verilog HDL65

Procedural Loops

for (init_assignment; condition; step_assignment) // ++ and -- do not exist

loop_statement;

while (condition)

loop_statement;

repeat (no_of_times)

loop_statement;

forever

loop_statement;

loop_statement: a single line statement, or several lines grouped w/ begin-end

M. R. Movahedin Verilog HDL66

Unwanted Latch Inference

• When a variable is not assigned at least in
one of the branch conditions, it means that
the model is silent with regards to that
variable in that specific circumstance.

• Since variables hold their values as long as
they are not changed, above scenario means
that variable value should not be changed in
that specific situation.

• This models a latch, doesn’t it?

M. R. Movahedin Verilog HDL67

Unwanted Latch Inference, Example

always @(*)

case(op)

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

endcase

When op is 2’b011, 2’b110 or
2’b111, X will hold its previous
value, which is a latch behavior,
not a combinational logic, even
though op equal to those values
do not happen at all.

always @(*)

case(op)

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

default: X = ’bx;

endcase

always @(*) begin

X = ’bx;

case(op)

3’b000: X = A + B;

3’b001: X = A – B;

3’b010: X = A & B;

3’b100: X = A | B;

3’b101: X = ~ A;

endcase

end

M. R. Movahedin Verilog HDL68

Always @(clk edge)

• How does a D-type flip-flop work? It waits for
the rising edge of the clock, then the output
(q) gets the value of input (d) after a short
delay.

• Here is the scenario in Verilog:

always @(posedge clk)

q <= d;

• It can be a large 64-bit register, a counter,
shift register, etc. etc.

M. R. Movahedin Verilog HDL69

Always @(clk edge),
Fully Synchronous Example

`timescale 1ns/1ns

module multi_func_reg(

input clk,

input reset,

input up,

input down,

input x5,

input x7,

input load,

input [31:0] data,

output reg [31:0] q

);

always @(posedge clk)

if(reset)

q <= 32'h00000000;

else if(load)

q <= data;

else if(up && !down)

q <= q + 1'b1;

else if(down && !up)

q <= q - 1'b1;

else if(x5)

q <= (q << 2) + q;

else if(x7)

q <= (q << 3) - q;

endmodule

M. R. Movahedin Verilog HDL70

Always @(clk edge), Async. Set & Reset

• A clock edge triggered flip-flop or register can only
asynchronously be set and/or reset, but nothing else, i.e. don’t
expect any async. functionality from them.

• The scenario would be: wait for clock edge to copy d to q, or
set/reset to change output accordingly. Here is the code:

always @(posedge clk, posedge set, posedge reset)

if(reset) // highest priority

q <= 1’b0;

else if(set)

q <= 1’b1;

else

q <= d;

M. R. Movahedin Verilog HDL71

Module Structure
`timescale 1ns/1ns

module module_name

#(

parameters

)

(

ports declaration

)

;

wires and variables

declaration

continuous assignments

module instantiations

always @(*) blocks

always @(clk edge) blocks

initial blocks

[ONLY in test-bench]

endmodule

M. R. Movahedin Verilog HDL72

Acknowledgement

• Several slides are taken from:

www.csd.uoc.gr/~hy225/veriwell/verilog_basics.ppt ,

By: Thanasis Oikonomou, Oct. 1998.

Advanced Topics

M. R. Movahedin Verilog HDL73

M. R. Movahedin Verilog HDL74

Concurrency Implementation

• Each simulation time is divided into several simulation
iteration/time steps or delta times,

• Each wire or variable has two associated values:
1- Current, and 2- New,

• New values are evaluated if there is any change in their
governing wires and/or variables, but current values are kept
unchanged,

• In case of wires, multiple drivers are also taken into account
and new values are defined based on the appropriate resolution
function,

• In case of variables, if there are more than one new value, only
the latest one is saved and all others are overwritten,

• New values are assigned as current values at the beginning of
next step (delta time). This happens for all wires and variables
altogether,

• Simulation moves to next time when all new values are equal to
current values, thus nothing to be done for that simulation time.

M. R. Movahedin Verilog HDL75

Built-In Primitives

• Built-in gate primitives:
and, nand, nor, or, xor, xnor, buf, not, bufif0, bufif1,
notif0, notif1, ...

• Examples:
nand (out, in1, in2); 2-input NAND without delay
and #2 (out, in1, in2, in3); 3-input AND with 2 t.u. delay
not #1 N1(out, in); NOT with 1 t.u. delay and instance name
xor X1(out, in1, in2); 2-input XOR with instance name

• User defined primitives (UDP) can be defined and
used. This is very useful for technology library
definition.

• Continuous assignment is preferred for modeling of
simple gates, use primitives only when necessary.

M. R. Movahedin Verilog HDL76

Hierarchical Names

• At top module, i.e. usually test bench, wires and
variables of sub-modules can be accessed via:

instance_name.[instance_name.]signal_name

• This can save time declaring extra wires for reading
or interconnecting sub-modules,

• An easy way to put monitors on too deep sub-
modules at the top level.

• If an initialization is required, e.g. for a free running
counter, then this should be done only on top module
using hierarchical names.

M. R. Movahedin Verilog HDL77

System Tasks

• $display(“..”, arg2, arg3, ..);  much like printf(), displays formatted
string in std output when encountered

• $monitor(“..”, arg2, arg3, ..);  like $display(), but .. displays string
each time any of arg2, arg3, .. Changes

• $stop;  suspends simulation when encountered

• $finish;  finishes simulation when encountered

• $fopen(“filename”);  returns file descriptor (integer); then, you can
use $fdisplay(fd, “..”, arg2, arg3, ..); or $fmonitor(fd, “..”, arg2, arg3,
..); to write to file

• $fclose(fd);  closes file

• $random(seed);  returns random integer; give her an integer as a
seed

Always written inside sequential part of the test-bench

M. R. Movahedin Verilog HDL78

$display & $monitor string format

