Data Communication Networks Introduction

M. R. Pakravan Department of Electrical Engineering Sharif University of Technology

Data Networks

Introduction

- The course introduces the underlying concepts and principles of data networks.
- It presents different components of a network and how these components fit together.
- The layers of functionalities implemented in network nodes are investigated and the underlying design concepts are discussed.
- The course is designed at a graduate level with practical assignments and short projects

General Information

- Lecturer: Mohammad Reza Pakravan
- Contact info:
 - E-mail: pakravan@sharif.edu
 - Office: Room 605
 - Office Phone: 6616-5922
- Course Schedule and Location:
 - Sunday /Tuesday, 13:30 -15:00, EE-201

Data Networks

Text References

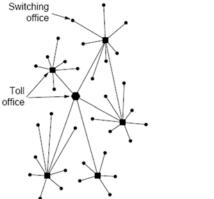
- Required Textbook
 - Andrew Tanenbaum. Computer Networks, Fourth Edition, Prentice Hall (ISBN 0-13-349945-6).

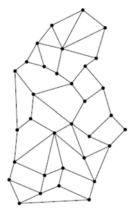
Additional textbooks and References

- W. Stallings. Data and Computer Communications. Prentice Hall.
- J. Walrand. Communication Networks: First Course. Aksen Associates.
- D. Comer. Internetworking with TCP/IP, Volume I, Prentice Hall.
- W. Stevens. TCP/IP Illustrated: The Protocols, Vol 1. Addison-Wesley.
- D. Comer. Computer Networks and Internets. Prentice Hall.
- L. Peterson and B. Davie. Computer Networks: A Systems Approach. Morgan Kaufman.
- Some of the course material are presented from other sources

Course Outline

- Introduction.
- The Physical Layer.
- The Data Link Layer.
- Multiple Access Protocols.
- The Network Layer.
- The Transport Layer.
- The Application Layer.

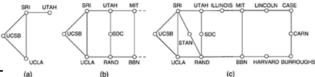

Data Networks

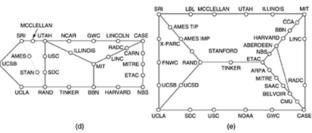

Course load

- Course work consists of
 - Following up on presented lectures
 - Reading text book
 - Learning how to use network simulation and modeling tools
 - Preparing reports on course labs and assignments
- Grading Policy
 - Course Labs and Assignments: 30%
 - Midterm:30%
 - Final: 40%

Brief History of Data Networks

- 1961-1964 Idea of store and forward distributed communication in packet networks by L. Kleinrock, D. Watts and P. Baran
 - More suitable for computer communication
 - More resilient to node failure
- Creation of ARPANET in late 1960's
 - To build a network that withstands destruction of some of its nodes
 - First Network started operation in 1969

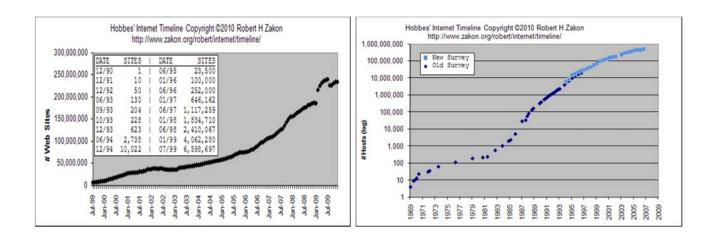



7

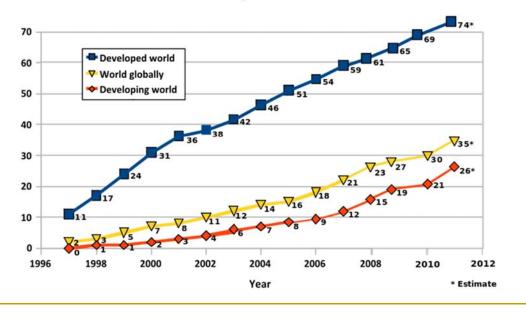
Data Networks

Example Networks

- Development of TCP/IP in 1970's (V. Cerf) and its full deployment over ARPANET in 1981-83
- Rapid expansion of ARPANET in 1970-1980's to include most key universities in USA and Europe
- NSFNET : U.S. National Science Foundation Network for Academia
 - □ First TCP/IP WAN early 1980s.
 - Three generations of networks were developed in a ten year time frame
 - Key factor in rapid development of US in ICT sector

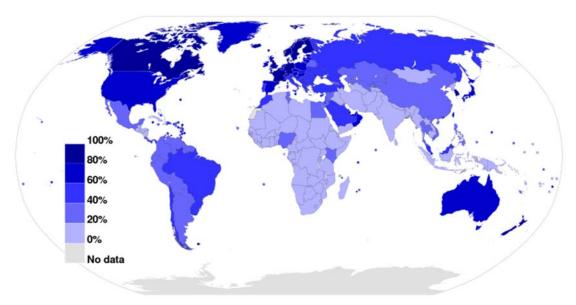


Example Networks


- Internet: Connection of ARPANET and NSFNET in 1983.
 - Millions of hosts, many more users
 - Size doubling every year
- Early important applications of internet: E-mail, FTP, Telnet, News
- Application that changed internet: Web Browsing (World Wide Web) developed in 1990 in CERN
- New Applications
 - Chat
 - VolP
 - Multimedia streaming
 - E-commerce
 - Peer to Peer file sharing
 - Many more …

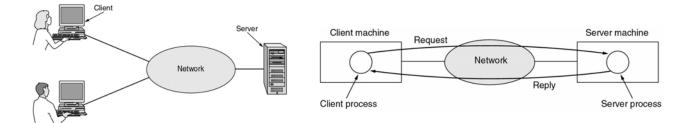
Data Networks

Network Expansion


Global Usage of Internet

Internet users per 100 inhabitants

Data Networks


Global Usage of Internet

Source: International Telecommunication Union (2010)

Computer networks

Old: Single powerful computer, many local terminals for interaction

Now: Many <u>autonomous</u> computers <u>interconnected</u> to do the job

Data Networks

13

Applications of Computer Networks

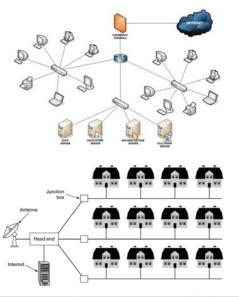
- Business Applications:
 - Resource sharing (Programs, equipment, information)
 - Communication medium (E-mail, Video-conference)
 - E-commerce (Business to Business, Business to Customer)
- Home Applications
 - Access to remote information
 - Person to person communication (E-mail, chat, peer to peer..)
 - Interactive Entertainment
 - E-commerce
- Mobile Applications:
 - Portable office (access to internet, E-mail, information, etc)
 - Access to information on the move
 - Navigation and maps

Networking Hardware

- Broadcast
 - Single channel shared by all parties
 - All receivers listen to each and every message and use the one intended for them
 - Used for smaller networks

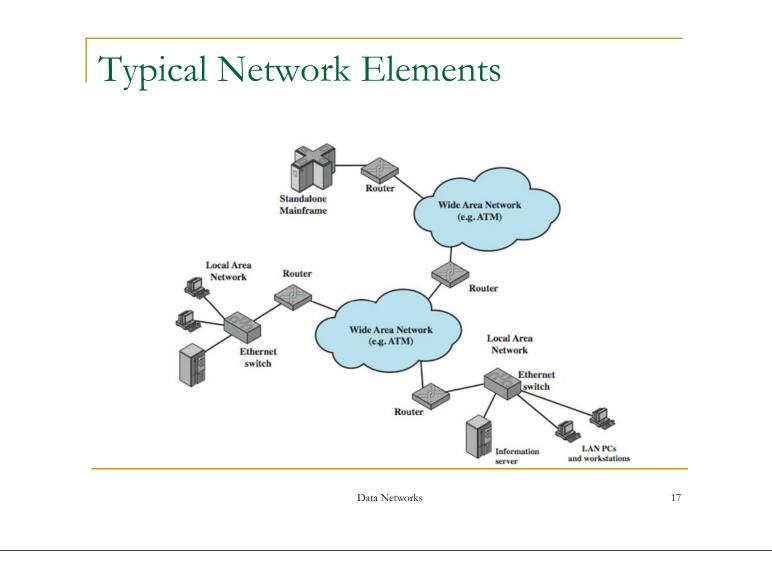
Multicast

- Data sent by a source, received by some users
- Application in video conferencing, collaboration, live video broadcast


Point to point

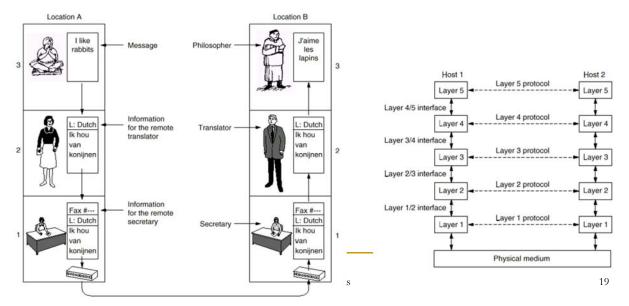
- Many connections between pairs
- Multiple roots between source and destination
- Used for larger networks

Data Networks


Network Hardware

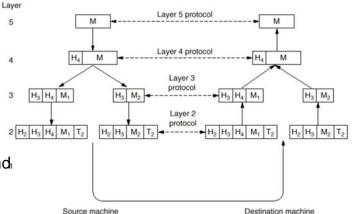
- LAN (Local Area Network)
 - Network usually within a building
 - Restricted Size, delay
 - Rate: 10Mbps to 10Gbps
 - Topology: Bus, Ring or point to point
 - Channel allocation: Static or dynamic
 - Examples: Ethernet (IEEE 802.3),
- MAN (Metropolitan Area Network)
 - A network within a city
 - Examples: Cable TV network
- WAN (Wide Area Network)
 - A network with large area
 - Example: Backbone optical transmission network of a country

Data Networks



Network Hardware (By Technology)

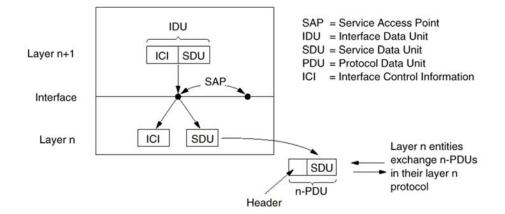
- Wireless Networks
- Mobile Networks
- Satellite Networks
- Wireline Networks
- PSTN Networks
- Microwave Radio Networks
- Optical Networks
- Access Networks
- Home Networks
- P2P Networks
- Many more...


Network Operation Principles

- Functionality of most networks are organized as a series of layers
- Each layer is implemented by an entity
- Peers: two communicating entities (within the same layer)

Network Software

- Network architecture:
 - set of layers and protocols
- Protocol:
 - An agreement on rules and procedures between two communicating parties on how the communications is to proceed.
- Protocol stack:
 - list of protocols, one per layer
- Interface:
 - Primitive operations and services offered by the lower layers to the higher layers
- Having Layers => Much simpler, more manageable and more flexible implementation of the network architecture


Examples of Layer Design Issues

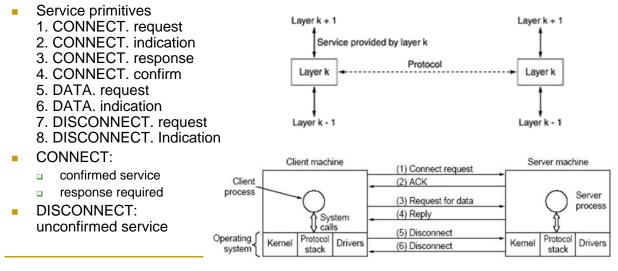
- Addressing: specifying source and destination
- Data transfer rules
 - simplex / half-duplex / duplex
 - logical channels per connection
 - priorities, e.g. one normal and one urgent channel
- Error control
 - detection / correction / retransmission
- Packet order and sequencing
- Flow control
 - regulate traffic; avoid overflow
 - Message length: cannot be arbitrary long
 - (re)assembly needed !
 - Multiplexing
- Routing
 - multiple paths

Data Networks

Interfaces and Services

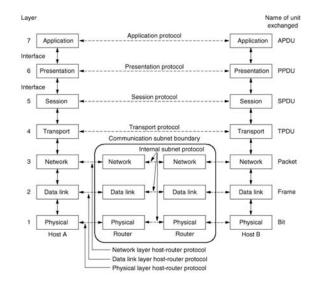
Relation between layers at an interface

Service Categories and Reliability


- Service Categories:
 - Connection oriented
 - Phone conversation
 - Telnet / remote login / FTP
 - Connectionless
 - Postal system
 - Email

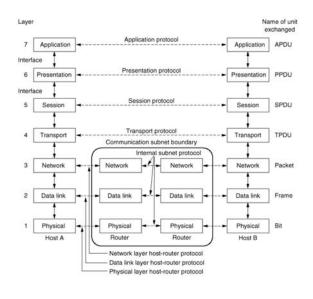
- Service Reliability
 - Reliable: never loose data
 - Acknowledgements / retransmission
 - Unreliable: data may be lost
 - No acknowledgements
 - Datagram service

	Service	Example		
Connection-	Reliable message stream	Sequence of pages		
oriented	Reliable byte stream	Remote login		
	Unreliable connection	Digitized voice		
Connection-	Unreliable datagram	Electronic junk mail		
	Acknowledged datagram	Registered mail		
	Request-reply	Database query		

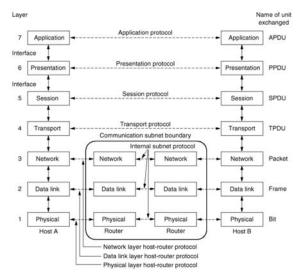

Services versus Protocols

- Service = set of primitives (operations) that a layer provides to the above layer
- Protocol = set of rules implementing a service Protocol concerns format, meaning of frames / packets /messages
- A protocol may be changed without changing the service

Open System Interconnect (OSI) Reference Model


- Model has 7 layers
 - A model which tells what each layer should do, not how it should be done!
- Physical layer
 - Transmission of raw bits (0/1 encoding)
 - Relevant aspects are: voltage, bit rate,
 - Channel characteristics (Electrical)

Data Networks


OSI Reference Model

- Data link layer
 - Transport of frames (of bits)
 - Reliable transmission
 - Flow control
 - Broadcast networks: channel sharing (medium access sublayer)
- Network layer
 - Transport of packets
 - Controlling the subnet
 - Routing: static or dynamic
 - Congestion control
 - Connect heterogeneous networks

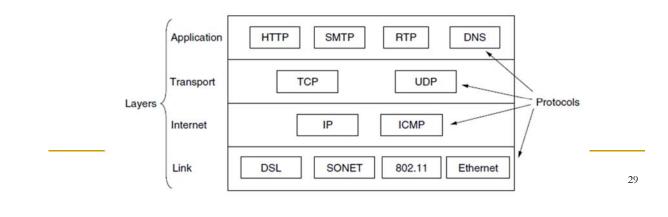
OSI Reference Model

- Transport layer
 - Connection management
 - End-to-end layer, from source to destination
 - Split data stream in packets
 - In-order delivery of packets (if network does not guarantee this)
 - Establish and delete connections across the network
 - Usually a unique connection is created for each required transport connection. However it may use 1-n or n-1 mappings
 - Flow control

27

Data Networks

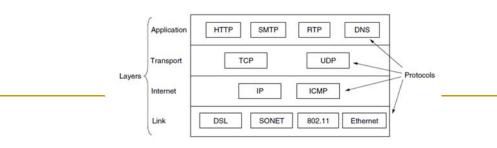
OSI Reference Model


- Session layer
 - Session management : dialogue control, synchronization after crash
- Presentation layer
 - Concerned with syntax and semantics of transmitted information
- Application layer
 - Commonly needed application protocols
 - Examples:
 File transfer,
 E-mail

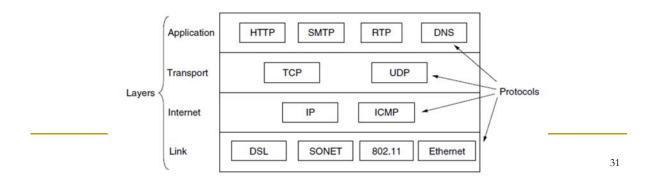
						-		Data	-	•	2
Application layer	Application	proto	col		+	-	AH	Data	-	•	Application layer
Presentation layer	Presentatio	n pro	tocol	-	F	н	D	ata	-	•	Presentatio layer
Session layer	Session protocol - SH Data				-	•	Session layer				
Transport layer	Transport protocol	TH Data				-	•	Transport layer			
Network layer	Network protocol	-	NH			Dat	a		-	•	Network layer
Data link layer	-	DH	I Data DT					Data link layer			
Physical layer	-	-	- Bits						Physical layer		

Actual data transmission path

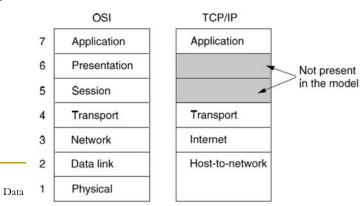
TCP/IP Reference Model


- Originated from ARPA NET
- Connecting many USA Universities and government institutes using leased telephone lines
- Internet layer is the most important layer
- IP: internet protocol
 - Connectionless
 - Packet-switching (Possible out-of-order delivery)

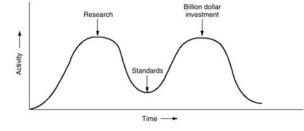
TCP/IP Reference Model


- Transport layer
 - End-to-end communication
 - TCP: transmission control protocol
 - Reliable
 - Connection-oriented
 - Flow control
 - Sequencing
 - Fragments byte stream into IP messages
 - UDP : user datagram protocol
 - Unreliable

- Connectionless
- No sequencing and flow control
- often used for 'one shot' communication: e.g. booting


TCP/IP Reference Model

- Application layer
 - TELNET: virtual terminal
 - FTP: file transfer protocol
 - SMTP: simple mail transfer protocol
 - DNS: domain name service
 - NNTP: network news transfer protocol
 - HTTP: hypertext transfer protocol
 - SNMP: simple network management protocol


Comparing OSI and TCP/IP

- OSI:
 - Top-down design methodology
 - The concepts clearly distinguishes
 - Services (specification)
 - Interfaces
 - Protocols (implementation)
 - Network layer supports both connectionless and connection-oriented communication
 - Transport layer supports only connection-oriented service !!
- TCP / IP
 - Bottom-up approach; grew out of practice
 - Not a general protocol stack
 - Host-to-network layer is actually an interface description

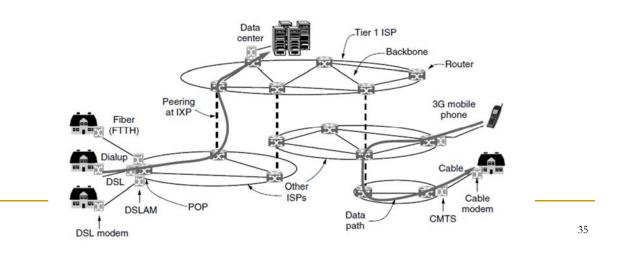
Critics on OSI model

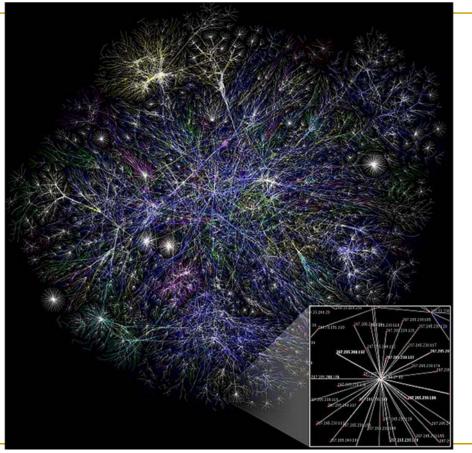
- Bad timing.
- Bad technology.
 - Too many layers (Competition with 7 layer IBM SNA! stack)
 - Overloaded (L2, L1) and empty (L5, L6) layers

- Too difficult to understand and implement
- Initially ignored connectionless protocols
- Bad implementations.
 - □ Early implementations were huge, unwieldy, and slow.
- Bad politics
 - TCP/IP as part of UNIX, widely available, useful and open
 - OSI as a creature of telecom ministers/big telecom companies

Data Networks

33

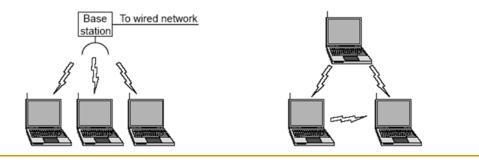

Model of Choice


- We will follow a hybrid, 5-layer model in this course
- Data Link Layer includes Multiple Access Control (MAC) functionalities, but noting the importance of MAC, we will devote a special section to it.

5	Application layer
4	Transport layer
3	Network layer
2	Data Link layer
1	Physical layer

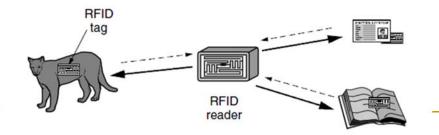
Internet Architecture

- ISP: Provide Connectivity (DSL, Dialup, Cable, FTTH, 3G, etc)
- ISP Routes data internally (Its own backbone) or through its interconnection with other ISPs (Peering at IXP) to the Data Centers that Host the desired services

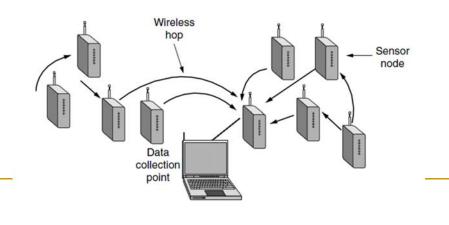


A partial map of the Internet, rendered based on ping delay and colored based on Top Level Domains Source: <u>http://en.wikipedia.org/wiki/File:InternetPrivaPetvozkipg</u>

Local Area Networks: Wireless LAN


- Idea: Allow wireless communication for
 - Access to backbone networks
 - Ad Hoc peer to peer communication
- Most famous standard: IEEE 802.11 series
- First developments in 1997 with 1Mbps or 2Mbps speed
- Newer generation: 802.11g working at 54 Mbps and 802.11n working at up to 450 Mbps

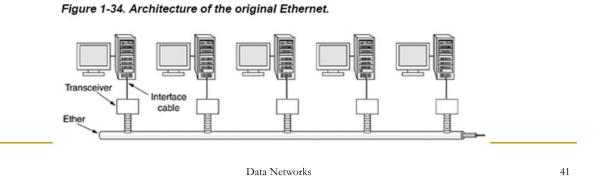
Data Networks


Radio Frequency Identification (RFID)

- Objects that can be used for many purposes such as identification and tracking
- RFID Reader interacts with RFID tags to send data to them and read data from them using radio waves
- RFID can be passive or active
- Networking issues such as addressing and multiple access control should be considered

Sensor Networks

- Many nodes that sense environmental conditions (temperature, sound, movement, etc) and report the data back to a central location
- Nodes should collaborate with each other to route the data properly
- Many key networking issues such as multiple access control and routing should be properly considered



Standardization: Who's Who

- Telecommunication world
 - ITU: International Telecommunication Union
- International standards
 - □ ISO: Int. Organization for Standardization (1946)
 - ANSI: American National Standards Institute
 - IEEE: Inst. of Electrical and Electronic Engineers
- Internet
 - IAB: Internet Activities Board
 - IETF: Internet Engineering Task Force
 - IRTF: Internet Research Task Force

Local Area Networks: Ethernet

- Ethernet:
 - Originally Developed by Metcalfe in 1976 at Xerox to connect computers
 - Initial standard by Xerox, Intel and DEC in 1978; standardized by IEEE as 802.3 in 1983
 - Evolved from original 3 Mbps to 100 Gbps
 - Dominant LAN technology, moving to MAN applications

